Valuations on convex sets , non - commutative determinants , and pluripotential theory

نویسنده

  • Semyon Alesker
چکیده

A new method of constructing translation invariant continuous valuations on convex subsets of the quaternionic space Hn is presented. In particular new examples of Sp(n)Sp(1)-invariant translation invariant continuous valuations are constructed. This method is based on the theory of plurisubharmonic functions of quaternionic variables developed by the author in two previous papers [5] and [6].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 4 Valuations on convex sets , non - commutative determinants , and pluripotential theory

A new method of constructing translation invariant continuous valuations on convex subsets of the quaternionic space Hn is presented. In particular new examples of Sp(n)Sp(1)-invariant translation invariant continuous valuations are constructed. This method is based on the theory of plurisubharmonic functions of quaternionic variables developed by the author in two previous papers [5] and [6].

متن کامل

Valuations, non-commutative determinants, and quaternionic pluripotential theory.

We present a new construction of translation invariant continuous valuations on convex compact subsets of a quaternionic space H n ≃ R4n. This construction is based on the theory of plurisubharmonic functions of quaternionic variables started by the author in [4] and [5] which is based in turn on the notion of non-commutative determinants. In this paper we also establish some new properties of ...

متن کامل

Isometry-Invariant Valuations on Hyperbolic Space

Hyperbolic area is characterized as the unique continuous isometry invariant simple valuation on convex polygons in H. We then show that continuous isometry invariant simple valuations on polytopes in H for n ≥ 1 are determined uniquely by their values at ideal simplices. The proofs exploit a connection between valuation theory in hyperbolic space and an analogous theory on the Euclidean sphere...

متن کامل

FUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES

In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...

متن کامل

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008